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Abstract — This paper presents a machine learning technique for fault diagnostics in induction motor drives.  A normal model and an 

extensive range of faulted models for the inverter-motor combination were developed and implemented using a generic commercial 

simulation tool to generate voltages and current signals at a broad range of operating points selected by a machine learning algorithm.  

A structured neural network system has been designed, developed and trained to detect and isolate the most common types of faults: 

single switch open circuit faults, post-short circuits, short circuits, and the unknown faults.  Extensive simulation experiments were 

conducted to test the system with added noise, and the results show that the structured neural network system which was trained by 

using the proposed machine learning approach gives high accuracy in detecting whether a faulty condition has occurred, thus 

isolating and pin-pointing to the type of faulty conditions occurring in power electronics inverter based electrical drives.  Finally, the 

authors show that the proposed structured neural network system has the capability of real-time detection of any of the faulty 

conditions mentioned above within 20 milliseconds or less.  

 

Index Terms — fault diagnostics, open circuit fault, short circuit fault, model-based diagnostics, machine learning, power electronics, 

inverter, motor, electric drives, neural networks, electric vehicle, hybrid vehicle, field oriented control.   

 

1 INTRODUCTION 

 

 A large number of industrial drives, including some used in electric vehicles (EV) and hybrid electric vehicles (HEV) [1], 

consist of three-phase induction motor drives and associated power electronics based inverter, together with the necessary 

control system [1].  The precise torque control of these motors has been made possible by power electronics with controllable 

solid state switches and the Field Oriented Control (FOC) techniques [2-5].   However, the solid state switches can fail by being 

“open” or “shorted”, and the reverse diodes in the switches can also fail.  This paper presents an intelligent system approach to 

the problem of real time detection of the open, short, and post short-circuit faults in inverter switches. 

 There exists a good amount of work in the literature [6-7] on fault diagnostics of internal  combustion (IC) engine vehicles.  

However, for electric or hybrid vehicles, fault diagnostic techniques have not been well investigated yet, since EV/HEV is still 

in the relatively early stage in the automotive industry compared to IC engine vehicles.  A closely related work by Ribeiro, 

Jacobina and Silva [8], was based on the direct comparison of voltages measured at a few key points of the system with 

application to an electric drive in which the effect of closed loop control is not considered.  Additional references exist in the 

area of diagnostics in the motor and power inverters [9-14].  There are a number of intelligent systems approaches which have 

been investigated in signal fault diagnosis.  Rule-based expert systems and decision trees are two traditional diagnostic 

techniques, but they have serious limitations.  A rule-based system often has difficulties in dealing with novel faults and 

acquiring complete knowledge to build a reliable rule-base.  A decision tree can be very large for a complex system, and it is 
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also system dependent such that even small engineering changes can mean significant updates [14].  More recently model based 

approaches, fuzzy logic, artificial neural networks (ANN), case based reasoning (CBR) are popular techniques used in various 

fault diagnostics problems in electrical systems.  In particular ANN‟s have been shown to be effective in many automotive fault 

diagnostic applications [15-18].  In this research the authors apply the neural network technology for detecting and locating 

multi-classes of faults in the electric drive inverters. 

 In this paper the authors present the state of the art diagnostic technologies based on machine learning, and a model that 

simulates a closed loop field oriented control based electric drive to generate multiple quantitative attributes of various signals 

including the torque, and voltages and currents in all phases.  Specifically, this research attempts to solve the following problem 

with reference to Fig. 1: “For a six-switch inverter driven three-phase induction motor under closed-loop control, given two 

current sensors in the output inverter lines (which is same as the motor line connections), and two voltage sensors across the 

lines, an intelligent diagnostic system should be developed to identify in real time whether there are any faulty inverter switches, 

assuming that only one of the six switches, or two switches on the same limb, can fail at a given time, and that the faulty 

condition can be either an open, a short, or a post-short type”.  The term “post-short circuit” has been defined in detail in 

section 2.  A limited amount of literature on inverter fault diagnostics is available [5, 8] where the effect of closed loop control 

is not included, and no other literature to the knowledge of the authors has reported on fault diagnostics in closed loop 

situations. Furthermore, this research extends far beyond the detection of fault occurrences in a closed loop electric system.  

This paper presents a structured neural network system that is trained to detect and locate (isolate), in real time, 15 different 

faulty conditions in either open or closed loop situations, and detect unknown faults. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A six-switch inverter in a three-phase electric drive model. 

 

This work builds upon, but extends significantly beyond the authors‟ previous work on intelligent diagnostics in electric 

drives [19-21].  In [19], the authors proposed a machine learning algorithm that automatically generates training data at critical 
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operation points in a six-switch inverter and showed that this machine learning approach is effective when it was used to train a 

robust diagnostic system for detecting single switch broken faults.  In [20-21] the authors presented a model based approach for 

fault diagnosis in electric drives under both open- and closed-loop controls.  The model was for a six-switch inverter driven 

three-phase induction motor, implemented by using a generic commercial simulation tool [22] to generate the normal operating 

signals and the faulty signals.  The model was used to generate two types of faults: single switch faults and post-short circuit 

faults.  An innovative machine learning framework was presented that involves an algorithm that automatically selects a set of 

representative operating points in the torque-speed domain, and the training of a diagnostic neural network for the detection of 

single switch faults and post short circuit faults.  The authors showed excellent results on the data generated by a simulation 

program and an experimental bench setup [20].  In order to make this paper reasonably self-contained within the limited amount 

of space, the authors have included the necessary information from their previous work wherever appropriate.  More 

information regarding the authors' related work can be found in reference [20]. 

In this paper, the authors extend the six-switch inverter driven three-phase induction motor model to include the short 

circuit faults.  There can be 15 classes of faults occurring in the six-switch inverter, namely: 6 single switch open circuit faults, 3 

post-short-circuit conditions, and 6 short circuit faults.  The authors present a real-time fault detection system that has the 

capabilities of robustly detecting and accurately locating these faults immediately after they occur.  The real-time fault detection 

system is developed using a structured neural network.  The authors will show that the diagnostic system has the capability of 

accurately detecting whether a fault has occurred, whether it is open circuit, short circuit, or post short-circuit fault, and pin-

pointing to the faulty location in the electric drive within 20 milliseconds or less.  The contribution of this paper is important 

because in many applications it is extremely important to detect a fault immediately after it occurs and pin-point to the cause of 

fault.  As soon as a fault is detected and located, e.g. switch A short or C‟ open etc., it should be isolated and the damaged part 

should be shut down immediately to minimize the damage to other parts of the system.  Identifying the location and type of the 

fault fast enough can also allow smooth transition to a gracefully degradable mode, which enhances the overall system 

availability.   

The authors also want to point out the challenges involved in generating short circuit faults, which constitute the additional 

type of faults presented in this paper.  In this paper the short circuit fault condition in the induction motor is simulated in a 

closed-loop control environment. In a physical setting, an induced short circuit fault can cause significant damage (if not total 

destruction) to the closed-loop controlled electrical system.  To prevent such a situation, an electrical system in a lab setting 

needs various protective mechanisms built in it to shut down the system before any signals in a faulty condition can be sampled.  

Regarding the possibility of setting up hardware based experiment where catastrophic failure will not occur during a short 
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circuit fault, it should be noted that this catastrophic failure pertains initially to the solid state power electronic switches, which 

will try to short circuit the source.  Hence, to save the system (both the source and the power electronics switch) one has to trip 

it off.  Otherwise the source itself, in addition to the switch, may suffer damage.  The issue, therefore, is more related to be able 

to diagnose the fault before it is tripped off.  Otherwise the power electronics circuit can soon become unbalanced.  At that 

point, if the motor still has mechanical load connected to it, the situation can lead to both electrical and mechanical damage to 

the motor due to unbalanced operation.  The authors noted earlier in this paper about the possibility of degradable mode of 

operation.  It is possible to operate in such a mode while the system is unbalanced (within some limitations).  However, that 

needs the initiation of an alternate control path in the motor control algorithm, which is not within the scope of this paper.  

Unless the motor control algorithm is altered properly during unbalanced condition, the motor drive system can undergo damage 

(both mechanical and electrical).  All the above items point to the difficulty of designing a physical experiment under the above 

circumstances. Therefore, the authors believe that simulated systems are important means to study fault diagnostic problems in 

closed-loop situation. Due to these difficulties, the results generated in the paper are primarily from the data produced by a 

simulation model.  The simulation model has been validated on the single open switch faults and post-short circuit faults by a 

lab bench setup [20].  In order to enrich the studies using simulation for short circuit faults, the authors present in this paper the 

fault detection results on signals generated with different degrees of noise. 

This paper is organized as follows.  Section 2 presents the closed-loop electric drive model that has the capability of 

simulating a broad range of faults: single open switch, post-short, and short circuit faults.  Section 3 presents a multi-class neural 

network framework for the diagnosis of 15 classes of faulty conditions in an electric drive.  Section 4 presents the real-time fault 

detection neural network system.  Section 5 gives the summary and conclusion. 

 

2 MODELING OF THE ELECTRIC DRIVE SYSTEM FOR FAULT-DIAGNOSTICS 

 

 In [20-21] the authors developed a simulation model of a closed loop electric drive system in an EV or HEV that simulates 

single switch open and post short circuit faults.  This section gives a quick review of this model and describes the extension of 

the model to simulate short circuit faults.   

In this model electromechanical torque is the feedback quantity to the controller, which compares it against a reference 

signal, and takes control actions accordingly.  The controller is an indirect FOC [2-3] that generates a reference three-phase 

voltage signal.  The reference voltage signal is then fed to the inverter pulse width modulation (PWM) algorithm to initiate 

voltage generation [2-3].  The job of the controller ends with the generation of gating signals to the inverter switches, and the 

situation thereafter is depicted in Figure 1.  Since the scope of this paper is on fault diagnostics and not the already well known 
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FOC techniques for motor control, the authors will not delve into the details of modeling, simulation, and control, and go 

through those very briefly in this section, since the references indicated earlier contain abundant details on those. The motor 

electro-mechanical system is described by the following standard set of differential and algebraic equations with d-q axis fixed 

in the stator [1-3], where Rs and Rr are the stator and rotor resistances, Ls and Lr are the stator and rotor self inductances, M is 

the stator/rotor mutual inductance, r is the electrical rotor  angular  velocity,  Vds  and Vqs are the d and  q  axis  stator  voltages,  

Ids and Iqs  are  the d and q axis stator currents,  Idr and Iqr are the d and q axis rotor currents, and p is the differential operator 

d/dt.  The rotor is assumed to be shorted and hence the voltages are 0 in equation (1).  

  

 

 

                           (1) 

  

 

 

The electromagnetic torque is given by Te = (3/2) (P/2) M {Iqs Idr – Ids Iqr}, where P is the number of poles.   The mechanical 

equation of motion for the motor shaft is given by Te - TL = J (d m/dt) + B m, where m is the mechanical shaft speed, TL is the 

load torque, J is the moment of inertia, and B is the friction coefficient.  The authors have fully implemented this model by using 

generic commercial software [20-22], and for convenience the implemented model will be referred as “SIM_drive” in this 

paper. 

 The various states of the switches and the corresponding voltages applied to the motor are indicated in Table I for normal 

condition, and in Tables II and III for one switch open and short circuit conditions respectively.  In these tables, the symbol VAn 

(or VBn , or VCn) means voltage between line “A” (or “B”, or “C”) and the neutral point “n” of the Y-connected stator winding of 

the induction motor, and E is the battery voltage.  The authors used this model to simulate 15 different faulty conditions, 

namely, 6 classes of single switch open, 3 classes of post-short circuits, and 6 classes of short circuits. 

 

Table I: Switching table for normal operation of the switch      

STATE 

# 

SWITCH 

A 

SWITCH 

B 

SWITCH 

C 

VAN/ 

E 

VBN/ 

E 

VCN/ 

E 

Null 0 0 0 0 0 0 

1 0 1 0 -1/3 2/3 -1/3 

2 0 1 1 -2/3 1/3 1/3 

3 0 0 1 -1/3 -1/3 2/3 

4 1 0 1 1/3 -2/3 1/3 

5 1 0 0 2/3 -1/3 -1/3 

6 1 1 0 1/3 1/3 -2/3 

Null 1 1 1 0 0 0 

 
 

 

 Vds       =    (Rs + pLs)  0                pM            0                     Ids 

Vqs      =    0                (Rs + pLs)  0                        pM                 Iqs 

0         =     pM            r M          (Rr + pLr)  r Lr              Idr 

0         =    - r M          pM                r Lr         (Rr + pLr)       Iqr 
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Table II: Switching table for faulted operation in which        Table III: Switching table for shorted operation in  
           switch A is permanently open. [23]                         which Switch A is permanently shorted 

 

      

 
 

 

                

In the “post short-circuit” condition, a complete burn out of a switch pair can happen (with both the upper and lower 

switches in a particular limb open due to burn out, which can take place if the upper switch is stuck-short and shortly thereafter 

the lower switch is gated to be ON), due to a power supply short circuit through the switches which is not cleared.  Under this 

condition (with both switches in a limb burned out), in order to perform the simulation the dynamic equations of the three phase 

machine have to be restructured, with the phase current corresponding to the burned out switch pair set to zero.  It should be 

noted that when a particular phase current of the machine remains totally zero all the time, it is not possible to create a table in 

the same manner as Table II, due to the fact that the particular limb is open with infinite impedance.  With reference to Table II 

(state # 4 to 7), under open fault condition the current can flow through one of the two possible paths (e.g. the dotted lines in 

Figure 1) based on the current that was flowing in the motor windings at the moment of the occurrence of the fault.  Hence, in 

this case there are two possible voltage values that can be imposed on the line to neutral of the motor windings, depending on 

which current path is used.  For example, if the current is flowing through the upper diode, then corresponding to state # 4 one 

needs to select the status of switches A=1, B=0, C=1, and conversely it will be A=0, B=0, C=1 if the current was flowing 

through bottom diode.  Consider the former case, which implies VAn = VCn, and VAn – VBn = E, the battery voltage.  These two 

equations by themselves are not sufficient to give the phase voltage values to be used in equations in (1) for all the three phases.  

The other condition, which is not an assumption, and is based on the stator and rotor circuit flux linkages using circuit theory, is 

that the summation of three line to neutral voltages for the phases in the motor is equal to zero or VAn + VBn + VCn = 0.  This 

condition is valid provided the three currents in the stator and rotor circuit in the induction motor adds up to zero (which is true 

in a 3 phase induction motor without a return neutral line, and is due to the winding topology), and provided that the individual 

phases A, B, and C has identical (or symmetrical) windings for both the stator and the rotor. Sometimes there is a misconception 

               
STATE # 

SWITCH 
A 

SWITCH 
B 

SWITCH 
C 

VAN 
/ E 

VBN / 
E 

VCN 
/ E 

Null 0 0 0 0 0 0 

1 0 1 0 -1/3 2/3 -1/3 

2 0 1 1 -2/3 1/3 1/3 

3 0 0 1 -1/3 -1/3 2/3 

4 0 0 1   -1/3 
   or 

   1/3 

  -1/3 
    or 

  -2/3 

  2/3 
or 

1/3 

5 0   0 0   0 or 

2/3 

 0 or  

 -1/3 

0 or   

-1/3 

6 0   1 0  -1/3  
or 

  1/3 

2/3 
or 

1/3 

 -1/3   
  or  

 -2/3 

Null 0 1 1  -2/3 

or 0 

1/3 

or 0 

1/3 

or 0 

STATE # SWITCH 
A 

SWITCH 
B 

SWITCH 
C 

VAN/ 
E 

VBN/ 
E 

VCN/ 
E 

Null 1 0 0 0 0 0 

1 1 1 0 0 0 0 

2 1 1 1 0 0 0 

3 1 0 1 0 0 0 

4 1 0 1 1/3 -2/3 1/3 

5 1 0 0 2/3 -1/3 -1/3 

6 1 1 0 1/3 1/3 -2/3 

Null 1 1 1 0 0 0 
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that this relationship between the phase voltages with the input dc voltage (based on Table II) is only valid during a steady state 

balanced operation, but in reality it is valid under unbalanced operations as well (like open fault) indicated earlier, subject to the 

restrictions given above [23].  Once this last condition is in place, it results in VAn = 1/3 E, VBn = -2/3 E, VCn = 1/3 E.   Similar 

derivations apply to other switching states. 

Table IV shows the operating conditions used in the simulation of these models.  

Table IV: The operating conditions used in the sine-PWM-closed-loop model 

VARIABLE NAME DESCRIPTION VALUE 

VDC DC voltage provided 

by battery 

500V 

PWM carrier 
Frequency 

Frequency of the sine 
wave 

8 kHz 

Speed Synchronous speed of 

the motor 

60, 300, 600, 900, 

1800 rpm 

Reference torque 

command 

Mechanical torque 

desired from the 
motor 

10, 50, 100, 200 Nm 

Simulation time Simulation Time 6.25s 

Trigger Time Time point to trigger 

the fault condition 

0.25s 

Sampling rate Sampling rate to get 
the output data. 

0.001s 

Number of data points Number of data points 6000 

 

     Examples of the various voltage, current, and torque profiles under different fault conditions are shown in Figs. 2(a), 2(b) and 

2(c), and 2 (d).   Note, the authors show only the data points in the first 100 ms in all the graphs in Fig. 2.  Since the values can 

go very high in these situations, it is difficult to depict all the curves within a readable range in a single diagram.  The intention 

of the plots, however, is to show the overall qualitative view, rather than finer numerical details (which are handled by the 

algorithm during sampling, training, and diagnostic processes).   It should be noted, as the figures indicate, that under certain 

fault conditions the current and torque can very quickly well exceed the rated limits of the machine and power electronic 

switches.   In a real system, however, the machine will need to be disconnected (or reconfigured) before it exceeds the limits, in 

order to protect the system.  However, the authors’ methodology allows the detection of the fault within a very short time after 

its inception.  It is the future plan of the authors to further extend this work to include appropriate protection and/or 

reconfiguration mechanisms after such faults. 
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                                                      b). Signals IA (in blue) and Te (in red) when 

                                                            switches AA‟ are broken 

                            
 

   (c). Signals IB (in blue) and IC (in red) when                                                        (d). Signals IA (in blue), IB (in red), IC (in green)  

          Switches AA’ are broken.            and Te (in black) when Switch A is shorted. 

                                             

Figure 2.  Plots showing currents, IA, IB, IC, and Torque Te under various fault conditions  
                                                                      at operating point: torque=100 nm, speed=600 rpm.  Time is in msec.    

 

3 ELECTRICAL DRIVE FAULT DETECTION USING SIGNAL ANALYSIS AND ARTIFICIAL NEURAL NETWORKS 

 

The authors developed a multi-class neural network framework for the detection and isolation of a broad range of faulty 

conditions in an electrical drive.  A multi-class neural network system requires the careful design of its input and output spaces, 

neural network architecture, selection of training parameters and training data [24-33].  In this application, the authors define the 

input space as a feature space with the features extracted from torque, voltage, and current signals in the electric drive system.  

The output of the neural network system is a vector of k+1 dimensions, F = {f0, f1, …, fk}.  For an input feature vector x , the 

neural network system generates the output vector, F( x ) = {f0( x ), f1( x ), …, fk( x )}.  The diagnostic decision can be derived 

from F( x ) using the following rules.  Let fk( x ) be = max{fi( x ) | i = 0, 1, …, k}. 

 Rule 1: if fj( x ) < T, then there is an unknown faulty condition in the electric drive. 

 Rule 2: if fk ( x ) = f0( x ) > T, then the electric drive is in normal operating condition. 
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 Rule 3: if fk( x )> T and j > 0, then the electric drive has a faulty condition that is known as the j
th

 type of faulty 

condition. 

T is a threshold that can be set to a value between 0 and 0.5.  For example, if a neural network system is trained to detect and 

isolate the six single-switch open faults, then k=6, where f0 represents the normal class, and f1 through f6  represent the six single 

switch faults at A, A‟, B, B‟, C and C‟ (see Figure 1) respectively.  For an input vector x ,  if f2( x ) = max {fi( x ) | i = 0, 1, …, 

k} and f2 ( x )  0.5, then it can be concluded that the switch A‟ in this circuit is broken; if max {fi( x ) | i = 0, 1, …, k} < 0.5, 

then there is a faulty condition in the circuit, but it is not a single switch fault. 

Figure 3 illustrates the computational steps involved in the development of such a neural network system.  There are two 

computational stages: neural learning and fault diagnostic. 

The input to the neural learning stage is a training data set that contains 16 groups of signals, { 1610 ,....,, sss }, with each 

group containing seven signals, i.e. three voltage signals, VAn, VBn, VCn, three currents IA, IB, IC , acquired at the three phases in 

the inverter (see Figure 1), and the motor electro-magnetic torque Te .  The groups of signals are generated by the simulation 

model presented in the previous section, under the following conditions. 0s  contains the seven signals generated under normal 

operational condition, 1s through 6s  each contains the seven signals acquired under the respective six single switch permanent 

open conditions, 7s through 9s  each contains the seven signals generated under the three respective post-short-circuit 

conditions: A and A‟ open, B and B‟ open, C and C‟ open;  10s through 15s  are the six groups of signals generated under the six 

short circuit conditions respectively. These groups of signals are segmented and features are extracted on a segment-by-segment 

basis.    The computational steps of signal segmentation and neural learning are described in a subsection below.  The result of 

the neural learning stage is a multi-class neural network that has the capability of detecting and isolating any one of the faulty 

classes in the six-switch inverter circuit shown in Figure 1. 

At the fault diagnostic stage, the segments of the seven signals at the time interval [t- tw, ], where w is referred to as 

the window size, are sent to the feature extraction function to generate a feature vector x .  The description of the feature 

extraction function is presented in subsection 3.1. The multi-class neural network “CFDNN” (Circuit Fault Diagnostic Neural 

Network) takes the feature vector x as input, and predicts whether there exists a fault in the circuit at time t. If there is a fault, 

CFDNN points out the type and the location of the fault. 
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                                         (a).  Neural learning of diagnostic knowledge     (b)  Fault diagnostic stage 

     Figure 3.  A multi-class neural network for circuit fault diagnosis. 

  
3.1    Signal Segmentation and Feature Extraction  

 In the proposed neural network framework, fault detection and classification is performed by analyzing the signals on a 

segment-by-segment basis.  The basic frequency of the signals generated by the simulation models is about 80 Hz, the sampling 

frequency is chosen to be 1000 Hz, and the length of a segment is 16 samples.  All input signals are segmented using the same 

fixed window size and the two adjacent segments are overlapped with 5 samples in order to achieve smooth transitions between 

adjacent windows.   For a signal with 3000 data points, it is segmented into 272 segments.  Note that all seven signals acquired 

under the same condition are subject to the same segmentation process.   

The following statistical features are extracted from each segment: 

 Max: maximum magnitude of the signal within the present segment.   

 Min: minimum magnitude of the signal within the segment. 

 Median: median of the signal within the segment. 

 Mean: mean of the signal within the segment.   

 Standard deviation: standard deviation of the signal segment. 

 Zero-frequency (i.e. dc) component of the power spectrum. 

Since there are seven input signals (three voltage signals, three current signals, and one torque signal), the output from the signal 

segmentation and feature extraction is a sequence of 42-dimensional (six features are extracted from each of the seven signal 

segments) feature vectors. The detection of signal faults within a time period is based on the feature vector extracted from the 

seven signal segments within the current time period by a multi-class neural network.     

 

 

Signal Segmentation 

{ ksss ,....,, 10 } 

Signal segments 

Neural Learning: 
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2. control parameter generation 

3. neural networks training 

Circuit Fault Diagnostic 
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3.2    A Multi-Class Fault Detection and Isolation Neural Network Framework  

         A multi-class neural network system maps the input feature space to an output space of more than two classes. Multi-class 

neural learning involves finding appropriate neural network architecture, encoding schemes, learning algorithms, and training 

methodology [30]. While binary classification is well understood, multi-class classification has been relatively less investigated. 

Many pattern classification systems were developed for binary classification problems, but the extension to the multi-class 

pattern classification is non-trivial, and often leads to unexpected complexity or weak performances [30-32].  The authors 

developed the following single neural network framework for detecting multi-class signal faults.   

One important issue in a multi-class neural network classifier is to design an encoding scheme used to represent the 

multiple classes in the output nodes of the neural network.  The authors chose to use the “one-hotspot” method described as 

follows.  For a k-class classification problem, the neural network system uses a k-bit output layer, i.e. k output nodes.  Each 

class is assigned a unique binary string (codeword) of length k.  For example, if the neural network is trained to solve the 

problem of the six-class single switch fault detection, the output layer should have seven nodes, one representing the normal 

condition, and the other six nodes representing the six faulty conditions. During the training stage, if a feature vector is extracted 

from segments of signals representing the normal condition, its target value for the output layer is 1000000, which means only 

the first output node should produce a value "1", and all other output nodes should output "0".  If a feature vector is extracted 

from the segments representing the switch B faulty condition, its target value for the output layer is 0001000, which means only 

the 4
th

 output node should produce one value "1" and all others output "0".     

In general the multi-class neural network, “Circuit Fault Diagnostic Neural Network” (CFDNN), has one output node to 

represent the normal condition, and other k output nodes to represent the k classes of faulty conditions.  The back propagation 

algorithm is used to train the neural network.  As shown in Figure 3(a), a CFDNN is trained on feature vectors extracted from 

segments of various signals generated by the simulation program under the normal and various abnormal conditions.  At the 

diagnostic stage, the seven signals, VAn(t), VBn(t), Vcn(t), IA(t), IB(t), Ic(t), and Te(t), which can be acquired by the sensors in the 

circuit, are processed as follows.  At time t, the segments of all the seven signals within the window of (t- w , t] are sent to the 

feature extraction function (see Figure 3(b)), which generates a feature vector )(tx of 42 dimensions from segments (VAn(t-

w ), VAn(t)], (VBn(t- w ), VBn(t)], (Vcn(t- w ), VCn(t)], (IA(t- w ), IA(t) ], (IB(t- w ), IB(t)], (IC(t- w ), Ic(t)], (Te(t- w ) , 

Te(t)].  For any given feature vector at time t, )(tx , CFDNN will fire one of its output nodes to indicate whether the circuit at 

time t is normal or has one of the faulty conditions.  If the winning output node has a low value, this indicates that the circuit has 

an unknown fault.  In this paper the authors use the neural network framework to train a system of three neural networks for 
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diagnostics of the three categories of most critical and frequent circuit faults in a three-phase electric drive model: single switch 

faults, post-short and short circuit faults.   

 

3.3    CFDNN‟s for Fault Detection of Open-Switch, Post-Short-Circuit, and Short Circuit 

 Three CFDNN‟s were trained to detect and isolate the faulty conditions under any operating state in the speed-torque 

domain of the electric drive system.   All three CFDNN‟s have the same framework described in section 3.2 above and were 

trained on the simulation data generated by the inverter based electric drive model described in section 2.  In this model, there 

are two operating parameters, torque and speed, that determine the operating state of the electric drive.   Each state dictates the 

voltage and current signals generated in the drive [20-21].  The entire data for training and test were generated by the operating 

points shown in the Figure 4.  Each operating point, (torque, speed), represents a state in the drive illustrated in Figure 1. These 

operating points were chosen by a machine learning algorithm “CP-Select”, presented in the authors‟ previous work [20].  At 

each operating point, the authors ran several simulations using the SIM_drive described in section 2. During each simulation, a 

normal condition is first simulated for about 0.25 seconds and then a faulty condition is triggered and the simulation continues 

for about 6 seconds. In each simulation, seven signals,  VAn(t), VBn(t), VCn(t), IA(t), IB(t), IC(t), Te(t), t= 0, ~ 6.25 sec are 

extracted and each signal consists of 6000 samples.  The data generated by the operating points shown in diamond symbols in 

Figure 4 were used for training neural networks, and the data generated by the operating points shown in square symbols are for 

testing.  

 

                                                                        Figure 4.  Operating points used for generating, training and testing data.   

             Torque is measured in the unit of nm, and speed is in rpm. 

 

 In order to train a robust neural network, a number of parameters must be carefully chosen including the number of hidden 

nodes and learning rate [33]. The authors used a three-fold cross validation approach to select the number of hidden nodes and 

proper learning rate for each type of neural networks.  In each fold, 2/3 of the training data were used to train the neural 

networks and the remaining 1/3  were used as the validation data, the learning rate varied among 0.005, 0.01, 0.05 and 0.1, and 
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the number of  hidden nodes varied among 10, 15, 20, and 25.  In each run, the stop criterion is a combination of the maximum 

epoch number and the threshold of error: if the number of the epoch has reached 5000 or the minimum squared error is less than 

1E-3, then the training stops.   The learning rate did not seem to have much impact on the performances on the validation data 

for all neural networks. Therefore the authors chose to use 0.01 in the final training of the neural networks.   

The authors evaluated the performances of each type of neural networks averaged over three validation set and found that the 

three neural networks with 20 hidden nodes gave the most robust performances.  Based on the above analysis, the following 

three neural networks were trained. 

  The CFDNN trained for detecting the single switch faults has 42 input nodes representing the 42 dimensions of the feature 

vector, seven output nodes representing the normal condition and the six single switch faults (for switches A, A‟, B, B‟, C, C‟), 

and one hidden layer with 20 nodes.  The CFDNN trained for detecting the post-short-circuit faults has 42 input nodes, one 

hidden layer with 20 nodes, and four output nodes representing the normal class and the three faulted classes of the post-short-

circuit.  The simulation data for the three post-short-circuit faults were generated by making one vertical switch pair open at a 

time, namely, the pairs A and A‟, B and B‟, and C and C‟ (see Figure 1).   The CFDNN trained for detecting the short circuit 

faults in the six-switch inverter scheme has 42 input nodes, one hidden layer with 20 nodes, and seven output nodes representing 

the normal class and the six faulty classes of short circuits: A short, A‟ short, B short, B‟ short, C short and C‟ short.   

 The performances of all three neural networks on the test data generated by SIM_drive using the 12 test points shown in 

squares in Figure 4 are presented in Figure 5 (a).  In order to test the robustness of the system against noise, the authors added 

3% of noise to all the data generated by SIM_drive.   The performances of the three neural networks trained on the noise data 

are shown in Figure 5 (b).  Let the 12 test points be {(si, ti) | i = 1, …, 12}.  )),((, iicn ts is the correct detection rate of the c
th

 

class of faulty conditions by the n
th

 neural network when the circuit is operating at the point (si, ti), where n =1 is the neural 

network trained to detect the six classes (c = 1, …, 6) of single switch open, n=2 is the neural network trained to detect the three 

classes of post-short circuit faults (c = 1, 2, 3), and n = 3 is the neural network trained to detect the six classes (c = 1, …, 6) of 

short circuit faults.   The blue bars in Figure 5 depict the average detection rate made by the neural network trained to detect the 

single switch open faults: 

      ),(
12

1 12

1

,1,1 ii

i

cc ts                                       (2)                                    

where c = 0 represents the normal class, and c = 1, …, 6 represent F1 … F6 that correspond to the faulty classes of A, A‟, B, B‟ 

and C and C‟ open respectively.  On the noise-free test data (see Figure 5 (a)), more than 97.5% of all the normal signal 
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segments were detected correctly; two classes of faults, the B‟ (F4) and C (F5) open faults, are detected correctly in 100%; over   

all the classes, the normal and the six faulty classes, more than 99% (shown in the “overall” category) of signal segments are 

detected correctly.  On the test data with added noise, the performances (see Figure 5 (b)) of all classes dropped in comparison 

to the noise-free data except for classes F1 and F6.  The overall detection rate on noise data is around 97.5%. 

  

                      
 
 

                                        (a) Performance without noise.                                                                                    (b) Performance with noise present. 

  
                                              Figure 5.  System performances of 15 classes of faults on test data without or with noise.  Blue bars mark  

                                                               the accuracy of detecting  single open switch faults, yellow bars mark the accuracy of detecting   

                                                               post-short faults, and the burgundy bars mark the accuracy of detecting short circuit faults. 
 

The yellow bars in both Figure 5(a) and (b) depict the performance of the post-short fault detection neural network 

calculated using the following formula:  

     ),(
12

1 12

1

,2,2 ii

i

cc ts                 (3)                                        

for c = 0, 1, 2, 3.  The post short circuits have only three classes of faults, A and A‟ open represented by c = 1 or F1, B and B‟ 

open represented by c = 2 or F2, and C and C‟ open represented by c = 3 or F3.  Note that F4 through F6 are not applicable for 

this neural network.  On the noise free test data (see Figure 5(a)), the detection rates for the normal class and the F2 fault, i.e. B 

and B‟ both are open permanently, are 100% in accuracy.  The average detection accuracy over all classes reached 99.5%.  On 

the noisy data (see Figure 5(b)), the performance drops slightly in each class, and the overall detection rate is 99%. 

The burgundy bars in both Figure 5(a) and (b) depict the performances of the neural network trained to detect the short 

circuit faults.  The performances are calculated using the following formula:          

     ),(
12

1 12

1

,3,3 ii

i

cc ts                                  (4)                 

for c = 0, … 6 where c = 0 represents the normal condition, c = 1 or F1 through c = 6 or F6 represent respectively the short 

circuit classes of single switches, A, A‟, B,  B‟, C and C‟ closed.  On the noise free test data, the system detected more than 

99.5% of the faults correctly over all classes except for the F2 class, i.e., the A‟ short class, which is detected correctly at a rate 
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of 97.5%.  On the noise test data, the overall performance is at 99%, which is only slightly down from 99.5% on the noise free 

data. 

To further study the noise effects, the authors randomly selected three test points, OP1 = (10, 600), OP2 = (50, 900), and 

OP3 = (200, 60), and then added three levels of noise: 5%, 10%, and 15%, to the test data generated from these points.  The 

system performances are illustrated in Figure 6.  At each operating point (OP), the average fault detection accuracies over all 15 

classes of faults are shown on the data without noise (in blue bars), data with 5% noise (in burgundy bars), 10% noise (in very 

light yellow bars), and 15% noise (in aquamarine bars).  For the data generated at OP1, the performance dropped from 99.8% to 

99.3% on the data with 5% and 10% added noise, and dropped to 98.4% on the data with 15% added noise.  For the data 

generated by OP2 and OP3, the performances stayed at 100% detection accuracy on the data generated with 0%, 5% and 10% 

added noise. The performances dropped slightly (to 98.8% on OP2 data and to 99.4% on OP3 data) when 15% noise were added 

to the data.  Over all the operating points, the noise data has very little effect on the system performances.  

Based on the above comparative study of the system performances on the noise free data and the data with different levels 

of noise, it can be concluded that the proposed three CFDNN systems are robust to data noise.    

 

 

                Figure 6.  Analysis of noise effects on neural network performances on test data  

            generated by three operating points, OP1, OP2, and OP3. 
                 

 

4       REAL-TIME ELECTRICAL DRIVE FAULT DETECTION AND CLASSIFICATION 

 The most challenging aspect in an electric circuit diagnostic system is to detect a fault immediately after it occurs and pin-

point to the cause of the faults.  As soon as a fault is detected and isolated where it is, e.g. A short or C‟ open etc., it is possible 

to either isolate or shut down the faulty part of the circuit to minimize the damage.  The knowledge about the type of fault, e.g. 

switches A and A‟ are open, can lead to fast recovery from failure.  In this section the authors present a structured diagnostic 

neural network system that is designed to detect, in real time, any of the 15 faults, i.e. 6 single switch open faults, 3 post-short 

circuit faults, and 6 short circuit faults, described in the last section.  Figure 7(a) shows the schematic drawing of the system.   
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The three neural networks NN1, NN2 and NN3, discussed in the last section are employed in the real-time fault detection 

and classification system, where NN1 is trained to detect any of the six single switch open faults, NN2 is the neural network 

trained to detect any of the three post-short-circuit faults, and NN3 is the neural network trained to detect any of the six short 

circuit faults.  The decision logic is described as follows.  Let the j
th

 output function of the i
th

 neural network be 
j

if , where j = 

0, …, 6 when i = 1 or 3, and j = 0, …3, when i = 2.  Let the feature vector at time t be )(tx .  The decision function involves the 

following steps of calculation.   

  First it finds the neural network, i, that has the highest confidence at its c
th

 output node among all output nodes of all three 

neural networks:  

c

if  =  
6,...,0,3,...,0,6,...,0

max
mkj

 {
jf1 ( )(tx ),  

kf2 ( )(tx ),
mf3 ( )(tx )               (5)  

If 
c

if < T, a threshold such as 0.5, then the circuit has an unknown fault, i.e. the fault is not any of the single open switch faults, 

or any of the post-short-circuit faults, or any of the six short circuit faults.  Otherwise, if c = 0, then the entire circuit is normal, 

and if c > 0 then the circuit has one of the 15 faults.  The type and location of the fault is identified through the following 

calculation.  If (i =1) and (c > 0), it is one of single switch open faults and the location of the fault is indicated by c, which 

indicates which one of the six switches is the faulty one.  If (i = 2) and (c > 0), the type of the fault is post-short, and c indicates 

which branch of the circuit has the post-short fault.  For example c = 1 indicates that the branch A and A‟ has the post-short 

fault.  If (i = 3) and (c > 0), the type of the fault is short circuit, and c indicates which of the six switch is shorted.   

For the purpose of comparison, the authors also implemented a single neural network to classify all 16 classes: normal, 6 

single switch open faults, 3 post-short-circuit faults, and 6 short circuit faults.  The schematic drawing of this neural network 

system is shown in Figure 7 (b).  The neural network has the same input layer as all the three neural networks in the structured 

system in Figure 7(a), however it has an output layer of 16 nodes, one represents the normal class, and the other 15 represent the 

6 single switch open faults, 3 post-short faults and 6 short circuit faults.   All neural network systems were trained and tested on 

the same data generated at the operating points illustrated in Figure 4. The objective of the two systems is to detect and identify 

any of the 15 faults as soon as they occur.  Therefore the performance of such a system is measured by the time needed to detect 

and isolate any of the 15 faults after its occurrence.    
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          Figure 8.  The Switch A open case under Te=200 Sp=900 operating                                     

                          condition. The shaded segment is the first segment being  

                          detected by the CFDNN after switch A is broken.   
                          Horizontal axis is time in msec. 

 

  Let t0 be the time at which a fault occurs.  If a faulty condition is first detected at time t based on features extracted from 

the segments of the signals between the time interval ],[ twt , the time that the system takes to detect this faulty condition is 

td = (t – t0).  Figure 8 illustrates this concept. In the figure three signals are displayed, the current and voltage measured at switch 

A, and the torque signal under the operation condition with switch A broken.  The shaded segment is the first segment that is 

detected correctly by the structured neural network system.  In this implementation, w = 16 ms, and every two adjacent 
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Figure 7: Two architectures of neural network systems for classifying multiple classes of faults in a three-phase electric drive. 
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segments are overlapped by about 5 ms.  In this example, the faulty segment was detected at t = 27 ms, the faulty condition 

occurred at time t0 = 11 ms, therefore, td = 16 ms, which implies that the faulty condition was detected within 16 ms.  

Figure 9 illustrates the performances of the two neural network systems on the test data generated by 12 operating points 

shown in Figure 4. The performance of a fault detection system is evaluated by the amount of time it takes to detect and isolate 

the faulty condition correctly after a fault occurs. The horizontal axis in Figure 9 indicates the 15 faulty classes and the average 

over all 15 classes, and the vertical axis indicates the time in milliseconds, which the two systems took to detect correctly each 

of the faulty classes.  

The blue bars show the performance of the proposed structured neural network system, and the burgundy bars show the 

performance of the single neural network system.  Except for A and A‟ open, the proposed structured neural network system 

correctly detects and identifies all the faulty classes in less time than the single neural network system.  Most of the faulty 

classes were correctly detected by the structured neural network system in less than 20 ms. This implies that the faulty 

conditions were detected as soon as they occurred.  Only two classes of faults were correctly detected at 23 ms after the faults 

occurred, which implies that the system detected the faults correctly at the second segment after the faulty conditions occurred.  

 

5  SUMMARY AND CONCLUSIONS 

        The authors have presented an intelligent system based diagnostic approach for the detection and isolation of a broad range 

of faults in electric drive inverters in closed-loop systems.   A model of the electric drive inverter with a three-phase induction 

motor and a control mechanism was developed that successfully simulates the normal operations of the power electronics 

inverter, six single switch open fault conditions, three post-short-circuit conditions, and six short circuit conditions under closed-

loop field oriented control.  This model has been implemented using a generic commercial simulation tool [22] to generate 

signals for neural learning of diagnostic features.  Three important sets of signals, namely the torque, and voltages and currents 

in different phases were used for the fault diagnostics.  These signals were segmented simultaneously and diagnostic features 

were extracted from signal segments.  A multiple class neural network framework, CFDNN, has been presented.  Three neural 

networks were developed under the framework for the detection and isolation of single switch open faults, post-short circuit 

faults, and short circuit faults.  The accuracy of the diagnostic results has reached more than 99% in average.  Furthermore, the 

authors presented a structured neural network system that is trained to detect and isolate any of the 15 faults in a three-phase 

induction motor in real-time.  The system performance is evaluated on the basis of time elapsed to detect a fault after it occurs.  

The simulation results show that the proposed system takes less than 20 ms on an average to successfully detect and isolate a 

fault. 
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In conclusion it can be said that the proposed model-based fault diagnostic approach combined with machine learning 

techniques is effective in reliably detecting and isolating faults occurring in power electronics inverter based electric drives in 

real-time. 
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